
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 02: Bare Bones Haskell

Syntax:
Data == Abstract Syntax Trees
Functions == Rewrite Rules on ASTs

Semantics:
Evaluation == Rewriting
Parameter Passing == Pattern-Matching

Review of Last Time….

Ø Programming Language = Syntax + Semantics
Ø Semantics is instantiated by another program (interpreter, compiler).
Ø Imperative languages (Java, C, ….) have statements that modify the state.
Ø State = Entire Memory
Ø Imperative program produces a sequence of state transitions.
Ø Imperative languages are hard to understand because tracing state transitions

is hard!
Ø Functional programs remove (or control) the notion of state, using instead

expressions which are rewritten by applying functions to subexpressions.
Ø Referential transparency = rewriting a subexpression ONLY changes that

subexpression and there are no side-effects (no changes to state).

Review of Last Time….

Our Strategy for Learning FP through Haskell

Ø We are going to build a functional language (Haskell) from the “ground up,”
starting with the simplest possible “Turing complete” set of features (i.e., can
do any computation), and adding features as we need them.

Ø These features will be “syntactic sugar” to make programming more
convenient, and not fundamentally new ideas.

Ø We will maintain referential transparency, and when we introduce state, it
will be as part of the expression.

“The true state of
beauty exists not when
there is nothing left to
add, but when there is
nothing left to take
away.” – Antoine de
Saint-Exupery

Occam’s Razor: “Entia
non sunt multiplicanda
praeter necessitatem.”

“Less is more.” –
Ludwig Mies van der
Rohe

Making Data in Bare-Bones Haskell

Recall: Programming language = Syntax + Semantics

Syntax = Data + Function Definitions

What is Data? Well, numbers, strings, lists, binary trees, hash tables, …..
Too complicated! Suppose all we have is the ability to say what syntax (words,
basic punctuation) is data and what are functions….

How to create a piece of data?
Something

data Something

Making Data in Bare-Bones Haskell

What about creating a set of data objects? We need the data objects and we
need a name (the “data type”):

How about Booleans

data Bool = True | False Bool
True

False
Name of data type data objects in data type

“or”

In Haskell, name of data objects and data types must
be capitalized!

Data in Bare-Bones Haskell

More examples…..

data CS320Staff = Wayne | Mark | Cheng

data Direction = North | East | South | West

data ChessPieces = Pawn | Rook | Knight | Bishop | Queen | King

data Color = White | Black | Green | Blue | Red

Note: The actual names mean nothing! Just syntax….
data A = B | C | D | E

Direction

North
East
South
West

Data in Bare-Bones Haskell

Structured data can be created by combining data declarations….

Simplest kind of structured data is a pair – two data objects combined together:

data BoolPair = Pair Bool Bool

What do the actual structured data objects look like?

Pair True True Pair True False

Pair False True Pair False False

Pair is called a Value
Constructor because
it constructs a data
type from other data
types.

We will sometimes
just say “Constructor.”

Pair: Bool Bool

Data in Bare-Bones Haskell

data BoolPair = Pair Bool Bool

Parentheses can be used to clarify that this is a single, structured piece of data,
but are not necessary:

Pair True True Pair True False

Pair False True Pair False False

Using parentheses: (Pair True True)

NOTE: Incorrect syntax: Pair(True, False)

Value Constructor Data types in the structure

Data in Bare-Bones Haskell

We can create structured data from any (previously defined) data type:

data Direction = North | East | South | West
data Color = White | Black | Green | Blue | Red

data Arrow = Arrow Color Direction

Data objects of type Arrow:
(Arrow Blue South) Arrow Green West

But NOT: Arrow South Blue Arrow Color Red

Constructor Data types in the structure

Note: It is allowed,
and even
encouraged, to use
the same name for
the name of the data
type and the
constructor.

Data in Bare-Bones Haskell

We can then add alternatives to create various kinds of structures for a single
data type:

data Direction = North | East | South | West

data Color = White | Black | Green | Blue | Red

data Arrow = Bare_Arrow

| BlackArrow Direction

| ColoredArrow Color Direction

Data objects of type Arrow:
(ColoredArrow Blue South) Black_Arrow West

BareArrow

Data in Bare-Bones Haskell

Note that constructors take a particular sequence of data types, and (for now)
ONLY those data types. You can’t give multiple definitions of a constructor!

data Direction = North | East | South | West

data Color = White | Black | Green | Blue | Red

data Arrow = BareArrow

| Arrow Direction

| Arrow Color Direction

NOT ALLOWED! Constructors must be unique!

Data in Bare-Bones Haskell

These data types have an obvious tree representation:
data Arrow = Bare_Arrow | BlackArrow Direction

| ColoredArrow Color Direction

Bare_Arrow

(ColoredArrow Blue South)

Black_Arrow West

Bare_Arrow

Colored_Arrow

Black_Arrow

Blue South

West

Data in Bare-Bones Haskell

We can also create recursive types, using the data type in its own declaration
(see section 8.4 in Hutton):

data Nat = Zero | Succ Nat

Data objects of type Nat:

Zero (Succ Zero)

(Succ (Succ Zero))

(Succ (Succ (Succ (Succ Zero))))

The constructor Succ takes a single data
object of type Nat. This can be simple
data object or structured (another Nat).

Succ

Zero

Succ

Data in Bare-Bones Haskell
How about Lists?

data Nat = Zero | Succ Nat

data List = Nil | Cons Nat List

Data objects of type List:

Nil Cons Zero Nil

(Cons (Succ Zero) (Cons Zero Nil))

So, a Python list [a1, a2, a3, a4, a5] would be represented:

(Cons a1 (Cons a2 (Cons a3 (Cons a4 (Cons a5 Nil)))))

Succ

Zero

Cons

NilZero

Cons

Data in Bare-Bones Haskell
How about Binary Trees? (Hutton, p.97, adapted a bit!)

data Bool = True | False

data Tree = Leaf Bool | Node Tree Bool Tree

Data objects of type Tree:

Leaf True (Node (Leaf True) True (Leaf True))

Node (Node (Leaf True) False (Leaf False))
True
(Leaf False)

NOT LEGAL: Node False Leaf True Leaf False

Data in Bare-Bones Haskell
Hm… this doesn’t allow for empty trees, so let’s try again….

data Bool = True | False

data Tree = Null
| Node Bool Tree Tree

Data objects of type the new type Tree:

Null (Node True Null Null)

Node True (Node False Null Null) Null

NOT LEGAL: Node True Node False Null Null Null

True

Node

Null

False

Node

NullNull

Functions in Bare-Bones Haskell

To define a function on the data objects, we give rules for rewriting a data
object to another expression (possibly containing additional function calls).

data Bool = True | False

not False = True
not True = False

When we write an expression to the interpreter using a function name, it
matches the function call to the rules:

> not False
True
> not True
False

Functions in Bare-Bones Haskell

data Bool = True | False

not False = True
not True = False

> not False
True
> not True
False
> not (not False)
False

Which is evaluated recursively:

not (not False) => not True => False

Functions in Bare-Bones Haskell

Evaluation of an expression by the interpreter proceeds as follows:

Scan the expression from the left (or: in post-order);
If a match between a sub-expression and the left-hand side of a rule is
found, replace the subexpression by the right-hand side:

not (not (not False))
=> not (not True)
=> not False
=> True

Functions in Bare-Bones Haskell

Evaluation of an expression by the interpreter proceeds as follows:

Scan the expression from the left (or: in post-order);
If a match between a sub-expression and the left-hand side of a rule is
found, replace the subexpression by the right-hand side:

not (not (not False))
=> not (not True)
=> not False
=> True

But function definitions without parameters are very limited!

So we have to add variables (= parameters).

Variables can be bound or “assigned” to any data object.

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

not True

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

no match!
Rule fails to match, try the next one!

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

not False

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

no match!
Rule fails to match, try the next one!

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond True x y

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

matches!

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond True x y

To rewrite an expression, look for a
rule which matches it – variables can
match anything.

Rules are tried in order.

If a match is found, rewrite the
expression, observing what bindings
were made for variables.

matches! no match!
Rule fails to match, try the next one!

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond False x y

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

matches!

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond False x y

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

matches! matches!

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond False x y

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

matches! matches! matches
with
x = Zero

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond False x y

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

matches! matches! matches
with
x = Zero

matches with
y = (Succ Zero)

Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero | Succ Nat

not True = False

not False = True

cond True x y = x -- this is just
cond False x y = y -- an if-then-else

(cond False Zero (Succ Zero))

cond False x y

=> (Succ Zero) (= y, where y = (Succ Zero))

To rewrite an expression, look
for a rule which matches it –
variables can match anything.

Rewrite, observing what
bindings were made for
variables.

Rules are tried in order!

x = Zero y = (Succ Zero)

rewrites to

Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y

=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this
matching-and-rewriting model
of computation is that we are
rewriting trees, where function
names and constructors label
the nodes.... We traverse the
trees preorder to determine
matches....

cond

False Zero Succ

Zero

cond

False x y

Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y

=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this
matching-and-rewriting model
of computation is that we are
rewriting trees, where function
names and constructors label
the nodes.... We traverse the
trees preorder to determine
matches....

cond

False Zero Succ

Zero

cond

False x y

Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y

=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this
matching-and-rewriting model
of computation is that we are
rewriting trees, where function
names and constructors label
the nodes.... We traverse the
trees preorder to determine
matches....

cond

False Zero Succ

Zero

cond

False x y

matches with x = Zero

Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero | Succ Nat

cond True x y = x
cond False x y = y

(cond False Zero (Succ Zero))
cond False x y

=> (Succ Zero) (= y, where y = (Succ Zero))

A more precise version of this
matching-and-rewriting model
of computation is that we are
rewriting trees, where function
names and constructors label
the nodes.... We traverse the
trees preorder to determine
matches....

cond

False Zero Succ

Zero

cond

False x y

matches with x = Zero

matches with
y = (Succ Zero)

