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Syntax:
Data == Abstract Syntax Trees
Functions == Rewrite Rules on ASTs

Semantics:
Evaluation == Rewriting
Parameter Passing == Pattern-Matching



Review of Last Time….

Ø Programming Language = Syntax + Semantics 
Ø Semantics is instantiated by another program (interpreter, compiler).
Ø Imperative languages (Java, C, ….) have statements that modify the state.
Ø State = Entire Memory
Ø Imperative program produces a sequence of state transitions.
Ø Imperative languages are hard to understand because tracing state transitions 

is hard!
Ø Functional programs remove (or control) the notion of state, using instead 

expressions which are rewritten by applying functions to subexpressions.
Ø Referential transparency = rewriting a subexpression ONLY changes that 

subexpression and there are no side-effects (no changes to state).



Review of Last Time….



Our Strategy for Learning FP through Haskell

Ø We are going to build a functional language (Haskell) from the “ground up,” 
starting with the simplest possible “Turing complete” set of features (i.e., can 
do any computation), and adding features as we need them. 

Ø These features will be “syntactic sugar” to make programming more 
convenient, and not fundamentally new ideas.  

Ø We will maintain referential transparency, and when we introduce state, it 
will be as part of the expression. 

“The true state of 
beauty exists not when 
there is nothing left to 
add, but when there is 
nothing left to take 
away.” – Antoine de 
Saint-Exupery

Occam’s Razor: “Entia
non sunt multiplicanda
praeter necessitatem.”

“Less is more.” –
Ludwig Mies van der 
Rohe



Making Data in Bare-Bones Haskell

Recall:   Programming language = Syntax + Semantics

Syntax = Data + Function Definitions

What is Data?    Well, numbers, strings, lists, binary trees, hash tables, …..
Too complicated!  Suppose all we have is the ability to say what syntax (words, 
basic punctuation) is data and what are functions….

How to create a piece of data?
Something

data Something



Making Data in Bare-Bones Haskell

What about creating a set of data objects? We need the data objects and we 
need a name (the “data type”):

How about Booleans              

data Bool = True | False Bool
True

False
Name of data type               data objects in data type

“or”

In Haskell, name of data objects and data types must 
be capitalized!



Data in Bare-Bones Haskell

More examples…..

data CS320Staff = Wayne | Mark | Cheng

data  Direction = North | East | South | West

data  ChessPieces = Pawn | Rook | Knight | Bishop | Queen | King

data Color = White | Black | Green | Blue | Red

Note: The actual names mean nothing!   Just syntax….
data A = B | C | D | E

Direction

North
East
South 
West



Data in Bare-Bones Haskell

Structured data can be created by combining data declarations….

Simplest kind of structured data is a pair – two data objects combined together:

data BoolPair = Pair Bool Bool

What do the actual structured data objects look like?

Pair True True        Pair True False          

Pair False True       Pair False False

Pair is called a Value
Constructor because 
it constructs a data 
type from other data 
types. 

We will sometimes 
just say “Constructor.”

Pair: Bool Bool



Data in Bare-Bones Haskell

data BoolPair = Pair Bool Bool

Parentheses can be used to clarify that this is a single, structured piece of data, 
but are not necessary:

Pair True True          Pair True False        

Pair False True         Pair False False

Using parentheses:    (Pair True True)

NOTE:     Incorrect syntax:     Pair(True, False)       

Value Constructor          Data types in the structure



Data in Bare-Bones Haskell

We can create structured data from any (previously defined) data type:

data  Direction = North | East | South | West
data Color = White | Black | Green | Blue | Red

data Arrow = Arrow  Color  Direction

Data objects of type Arrow:
(Arrow Blue South)      Arrow  Green West

But NOT:       Arrow  South Blue         Arrow Color Red 

Constructor          Data types in the structure

Note: It is allowed, 
and even 
encouraged, to use 
the same name for 
the name of the data 
type and the 
constructor. 



Data in Bare-Bones Haskell

We can then add alternatives to create various kinds of structures for a single 
data type:

data  Direction = North | East | South | West

data Color = White | Black | Green | Blue | Red

data Arrow = Bare_Arrow

| BlackArrow Direction      

| ColoredArrow Color Direction

Data objects of type Arrow:
(ColoredArrow Blue South)      Black_Arrow  West

BareArrow



Data in Bare-Bones Haskell

Note that constructors take a particular sequence of data types, and (for now) 
ONLY those data types. You can’t give multiple definitions of a constructor!

data  Direction = North | East | South | West

data Color = White | Black | Green | Blue | Red

data Arrow = BareArrow

| Arrow Direction            

| Arrow Color Direction

NOT ALLOWED!     Constructors must be unique!



Data in Bare-Bones Haskell

These data types have an obvious tree representation:
data Arrow = Bare_Arrow  | BlackArrow Direction      

| ColoredArrow Color Direction

Bare_Arrow

(ColoredArrow Blue South)      

Black_Arrow  West

Bare_Arrow

Colored_Arrow

Black_Arrow

Blue South

West



Data in Bare-Bones Haskell

We can also create recursive types, using the data type in its own declaration
(see section 8.4 in Hutton):

data  Nat = Zero | Succ Nat

Data objects of type Nat:

Zero      (Succ Zero)     

(Succ (Succ Zero))

(Succ (Succ (Succ (Succ Zero) ) ) )

The constructor Succ takes a single data 
object of type Nat. This can be simple 
data object or structured (another Nat).

Succ 

Zero

Succ 



Data in Bare-Bones Haskell
How about Lists?

data Nat = Zero | Succ Nat

data List = Nil | Cons Nat List

Data objects of type List:

Nil      Cons Zero Nil

(Cons (Succ Zero) (Cons Zero Nil) ) 

So, a Python list  [a1, a2, a3, a4, a5] would be represented:

(Cons a1 (Cons a2 (Cons a3 (Cons a4 (Cons a5  Nil) ) ) ) )

Succ 

Zero

Cons 

NilZero

Cons 



Data in Bare-Bones Haskell
How about Binary Trees?    (Hutton, p.97, adapted a bit!)

data Bool = True | False

data Tree = Leaf Bool | Node Tree Bool Tree

Data objects of type Tree:

Leaf True    (Node (Leaf True) True (Leaf True) )

Node (Node (Leaf True) False (Leaf False)) 
True 
(Leaf False)

NOT LEGAL:    Node False Leaf True Leaf False



Data in Bare-Bones Haskell
Hm… this doesn’t allow for empty trees, so let’s try again….

data Bool = True | False

data Tree = Null 
| Node Bool Tree Tree

Data objects of type the new type Tree:

Null             (Node True Null Null)

Node True (Node False Null Null) Null

NOT LEGAL:  Node True Node False Null Null Null

True 

Node 

Null

False 

Node 

NullNull



Functions in Bare-Bones Haskell

To define a function on the data objects, we give rules for rewriting a data 
object to another expression (possibly containing additional function calls). 

data Bool = True | False

not False  =  True
not True   =  False

When we write an expression to the interpreter using a function name, it 
matches the function call to the rules:

> not False
True
> not True
False



Functions in Bare-Bones Haskell

data Bool = True | False

not False  =  True
not True   =  False

> not False
True
> not True
False
> not (not False)
False

Which is evaluated recursively:

not (not False) => not True => False



Functions in Bare-Bones Haskell

Evaluation of an expression by the interpreter proceeds as follows:

Scan the expression from the left (or:  in post-order);
If a match between a sub-expression and the left-hand side of a rule is 
found, replace the subexpression by the right-hand side:

not (not (not False) )  
=> not (not True)
=> not False
=> True



Functions in Bare-Bones Haskell

Evaluation of an expression by the interpreter proceeds as follows:

Scan the expression from the left (or:  in post-order);
If a match between a sub-expression and the left-hand side of a rule is 
found, replace the subexpression by the right-hand side:

not (not (not False) )  
=> not (not True)
=> not False
=> True

But function definitions without parameters are very limited!  

So we have to add variables  ( = parameters). 

Variables can be bound or “assigned” to any data object. 



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

not    True

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

no match!
Rule fails to match, try the next one!



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

not    False

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

no match!
Rule fails to match, try the next one!



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   True    x      y

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

matches!



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   True    x      y

To rewrite an expression, look for a 
rule which matches it – variables can 
match anything. 

Rules are tried in order.

If a match is found, rewrite the 
expression, observing what bindings 
were made for variables. 

matches! no match!
Rule fails to match, try the next one!



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   False   x      y

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

matches!



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   False   x        y

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

matches! matches!



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   False    x       y

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

matches! matches! matches  
with
x = Zero



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   False    x       y

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

matches! matches! matches  
with
x = Zero

matches with 
y = (Succ Zero)



Functions as Rewrite Rules

data Bool = True | False
data Nat = Zero |  Succ Nat

not True = False

not False = True

cond  True   x  y   =   x     -- this is just                            
cond  False  x  y   =   y     -- an if-then-else

(cond   False   Zero   (Succ Zero) )

cond   False    x        y

=>   (Succ Zero)    ( = y, where y = (Succ Zero))

To rewrite an expression, look 
for a rule which matches it –
variables can match anything. 

Rewrite, observing what 
bindings were made for 
variables. 

Rules are tried in order!

x = Zero y = (Succ Zero)

rewrites to



Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero |  Succ Nat

cond  True   x  y   =   x
cond  False  x  y   =   y

(cond   False   Zero   (Succ Zero) )
cond   False    x        y          

=>   (Succ Zero)    ( = y, where y = (Succ Zero))

A more precise version of this 
matching-and-rewriting model 
of computation is that we are 
rewriting trees, where function 
names and constructors label 
the nodes....  We traverse the 
trees preorder to determine 
matches....

cond 

False Zero Succ 

Zero

cond 

False x y 



Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero |  Succ Nat

cond  True   x  y   =   x
cond  False  x  y   =   y

(cond   False   Zero   (Succ Zero) )
cond   False    x        y          

=>   (Succ Zero)    ( = y, where y = (Succ Zero))

A more precise version of this 
matching-and-rewriting model 
of computation is that we are 
rewriting trees, where function 
names and constructors label 
the nodes....  We traverse the 
trees preorder to determine 
matches....

cond 

False Zero Succ 

Zero

cond 

False x y 



Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero |  Succ Nat

cond  True   x  y   =   x
cond  False  x  y   =   y

(cond   False   Zero   (Succ Zero) )
cond   False    x        y          

=>   (Succ Zero)    ( = y, where y = (Succ Zero))

A more precise version of this 
matching-and-rewriting model 
of computation is that we are 
rewriting trees, where function 
names and constructors label 
the nodes....  We traverse the 
trees preorder to determine 
matches....

cond 

False Zero Succ 

Zero

cond 

False x y 

matches with x = Zero



Functions as Rewrite Rules
data Bool = True | False
data Nat = Zero |  Succ Nat

cond  True   x  y   =   x
cond  False  x  y   =   y

(cond   False   Zero   (Succ Zero) )
cond   False    x        y          

=>   (Succ Zero)    ( = y, where y = (Succ Zero))

A more precise version of this 
matching-and-rewriting model 
of computation is that we are 
rewriting trees, where function 
names and constructors label 
the nodes....  We traverse the 
trees preorder to determine 
matches....

cond 

False Zero Succ 

Zero

cond 

False x y 

matches with x = Zero

matches with 
y = (Succ Zero)


